Acoustics Parameters Estimation by Artificial Neural Networks
نویسنده
چکیده
In order to solve the geophysics inverse problem, the artificial neural networks of Elmen type were trained to extract acoustic parameters from seismic trace. This type of network offers an advantage of training simplicity by the Backpropagation conjugate gradient algorithm. The networks behaviour observed on training data is very close to the one observed on test data. The efficiency of these networks is tested with the noisy data, and the results were very encouraging.
منابع مشابه
Estimation of coal swelling index based on chemical properties of coal using artificial neural networks
Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...
متن کاملEstimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کاملUsing neural network to estimate weibull parameters
As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...
متن کاملEstimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...
متن کاملEstimation of Soil Infiltration in Agricultural and Pasture Lands using Artificial Neural Networks and Multiple Regressions
Common methods to determine the soil infiltration need extensive time and are expensive. However, the existence of non-linear behaviors in soil infiltration makes it difficult to be modeled. With regards to the difficulties of direct measurement of soil infiltration, the use of indirect methods toestimate this parameter has received attention in recent years. Despite the existence of various th...
متن کامل